§ 5 DPuricy

In this section we geperalize scme aspecis of purity to locally
presentable categories. This will be crucial fer the next section but

seems of independant intercst and we therefore state 1t =&

. . <
Recall that over a ving A a subwmodule 1 : U-—<=3A of a
A< Mod 1is called pure iff for every right A-module JC.ModA the
VT D

induced wap BwAi ; X@AUH~$X®AA is a monowmorphism. Cléarly i : U—-24

ig already pure if Bmﬁi is a monomorphism for cvery finitely
presentable module B because every module is a filtered colimit c¢f
finitely presentable ones. (Actually one can test purity with finitely

presentable cyclic modules, bul -this 1s not relevant in the foliowing.

The important thing is that purity can be tested with a set of medules.)

e
O]

Among the various characterizations of purity the following
instructive for ouy purposes. A monomorphism i : U-—»A is pure 1{f

it 1g¢ a filtered ceolimit of splitting monomorphisms. Therefore any

functov T :  Mod - 32X which preserves fiitered colimits takes pure

movomorphisms into monomorphisms. The provise is that in ¥ a filtered

a

colimit of splitting monomorphisms is again a monowornhism. Wote that

the clese of all filtered colimit preserviung T (X variable) contains

a subset with which purity can be tested. Fakiv [ 7] used the above

characterization to define purity im locally presentable catezories
b p B, P &

Qe

We ivtroduce here a weaker nction of purity. "
Now let A be an arbitrary category and let (TV :'A»~~->XV)V,_T_,l be a
o] = 2yl yen

family of functors. A momnomorphism 1 : U-—2A in A 1s called pure

s

with respect to (T if T i ¢ T U~-—3T A is & monomerphism for

VoVaM \Y v \

-

every Vg M . Given a subobject Y of A< A we are concerned with the
problem of censtructing a pure subobject Y' of A which contains Y
and is not much bigger than Y . For locally prescntable categories and
a set M we give a-constructicon and size estimates which are ithe best

possible in the cases envisaged here. It shonld be noted that the
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existence of arbitrary colimits in A and ZV is not needed, the
"minimal" conditions on A, KV and TV can be found in 5.3c¢) and
5.6 b).

We begin with some preparation., Recall that e(A) denotes the least
regular cardinal <y such that A is y-generated, i.e. the functor

[A,—] : A—Sets ©preserves monomorphic y-filtered colimits (cf. 2.2).

5.1 Lemma  Let A be a locally a-generated category (ef. 2,.3) and

T : A-=2X a functor which preserves monomorphic o-filtered colimits.

Let a 2 a be any regular cardinal such that

1) if We A and e(w) £ a , then e(IW) < a

2) if p <o and 8 < T , then g? < @

Then if UgA 1is o-generated, so is TU.

. - + +
Remark WNote that 1if o = ﬁ; or o = (2Y) for some >

Y o6 , then

A, . . . . . +
the "akward" condition 2) is automatically satisfied.(Recall that vy

denotes the least regular cardinal > Y.

Proof The case o = & is trivial and we assume o > a . Let UWe€A
be an a-generated object. By 2.7 there is a family (w1)1€I of

A~generated objects W1€‘A and a proper epimorphism *f: 11 W{-ﬁ!i
~ el
such that card(I) < & . Let R be the set of all subsets J of I

”,

with card(J) < o ardered by inclusion. Clearly R ig a-filtered and

”»

it follows from condition 2) that card(R) < a . Let U denote the

J
~f . _
image of the composite | | W1—~% J_i_w{——»u , where the first mors=
1€J 1el . '
phism is given by the inclusion Jc I . Then by [ 1 6.7 d) U, 1is
again a-generated. Hence by condition 1) TUJ is d~generated. By [LEJ
6.7 a) the canonical morphism ¢: lim U0 is monomorphic. Since
JeR ;
Y Il W-—U factors through ¢ : lim U —U and “f is a proper
el JER

epimorphism, it follows that ¢ 1is an isomorphism. Summarizing we



obtain

e(TU) = e (T

because by L 762 an Ga~colimit of G-generated objects is again o-generatéd,

This completes the proof. (We note the similarity with the proof of
3.7)). Concluding we remark that the existence of colimits in A 1is
not needed for the above argument. We have only used that an &—genew

rated object U is an a~filtered &-colimit of a-generated subobjects.

Recall that a locally é-presentable category is called locally
6-noetherian if every S-generated object is &- presentable. By [ii] 13.3

every locally presentable category is locally S-noetnerian for suffi-

ciently large 6 .

5.2 Theorem Let (TV 3 vaagv)v - be a family of fung&gr where

M ii E.EEE ?EE. A iEg EV » VEM are 1oca11y prese ntable Eiiiggz}if.

agsume there 1o 2 regular cardinal o such that every Ty preserves

monomorphic o- flLtLLed coliﬁfts and that in A and D a-filtered

“collm_i of monomoyziiﬁﬂf are monomorphic for every VE M . Let 8 be

én& regular Eardin%} iﬂﬁk that

1) card(M) < 8§ > q

2) A éf lg;ally G—geneﬁiFEE EEE EV ii locally d8-noetherian for
every VEM _ -

— e .

3 if UeA and e¢(U) < 8 , then e(TQU) < & for every V&M

(cf. 5.1)

Then every ¢- generﬂted subobject Y of A€ A 1is contained in a pure

subobject Y' of A which is als so S-generated.

.5.3 Remarks

a) Note that by 5.1 and [13] 13.3 there is always a regular cardinal &
satisfying 1) - 3) and it can be choosen sc as to exceed any given

cardinal. The point is of course to choose &8 as small as possible.
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b) Note that y Thas to be strictly bigger than o , whence vy > f

For inst@nce for left modules over a ring A - 1i.e. A = AMod .
EV = Ab.Gr., TV = XV®A for a finitely presentable right

A-module XV and M = set of equivalence classes of finitely pre-
sentable right A-modules - one has « =‘X; and card(M) = card(A)

if A is infinite and card(M) = K; if A 1is finite. Clearly

for § > card(A) every d-generated mocdule U is 8-presentable
and card(U) < & , whence card(X@AU) < § for every finitely pre-
sentable X . Thus for & > (card(A),.Ké) every 6-generated sub-

module Y of A is contained in a S-generated pure submodule Y

of A (cf. Barr [1]).

c) From the proof of 5.2 below it will be obvious that not all
assumptions on A and E‘, are needed, in particular the existence
of arbitrary colimits in A and

§V is redundant. DBesides condi-

tions 1) and 3) only the following properties of é’§V and TV
are used : A has o~filtered colimits and every TV : é—"9gv s VEM

preserves them. In A and in every -X.  , VC M

Xy s an o—-filtered co-

a

limit of monomorphisms is again: a monomorphism. Every object AC A

is a 6-filtered colimit of S-generated subobjects. In X

Xy » Ve M,

every Od+~generated object is S-presentable and every morphism ad- '

mits a factorization into a proper epimorphism and a monomorphism.
LN

Proof of 5.2 Let 1 : Y—>A be a monomorphism in A, where (YY) 3 6.

Then TV(Y) is d-generated and hence S-presentable for every Ve M . Let

A = 11% YU be the colimit presentation of A as the §-filtered co-
) H ' \
limit of its 8-generated subobjects YU and let iu R Yﬁ~—9A denote

the inclusion (cf. 2.8). Clearly i : Y——3A belongs to this system and

‘we write Y = YO and 1 = io . Since TV(YO) is S~-generated, so is

%m(TV(iO) for every Ve M , cf. [ } 6.7 d). Thus im(Tv(io)) is
ny ~

6-presentable and from 1i

) U

a 6-generated subobject Yu together with 4

TV(YU)—MT_%TV(A} it follows that there is

morphism

=
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g€ ¢ im(T (i )) =3 T (Y ) - depending on T, and we thereforewrite
H V' o V' u J
i 1 —_— [ inste - 81 -x g i ¢
EV 1m(TV(1O)) > TV(HV) instead such that the diagram
.0
im(T_ (i )) = T_(A)
TV (o] TV
&V id
b T, (i) R
(Y A A
Ty iy 2Ty ()
commutes, where j; and iV 3 YV—~¢A denote the canonical inclusions.:
(Note that Tv(iv) need not be a monomorphism). Let ié : Y%mnaA be
a S-generzted subobject containing io i YO-9A and iv i YV—”ﬁA

The ineclusions u YOMH%YG and v 3 Yv-$Y6 give rise to a pair of

morphisms

€
; : v
50 .ﬁﬁm(TV(lo” —— TV(YV)HMI Cw)
v A -V
/_.f ‘\‘\“} ,
i Y * m
Iy (Y Ly (Xy)
~ =
e ——— e R R e »-—-'-'"“—'—'__"--F——F
Ty (v)
~where ps denotes the canonical projection - which become equal when

) ., ' «y R IR, o E L _ —
composed with Iv(lv) 3 TV(YV) }IV(A) . Since TV(YO) ig d-presen

. = T2 v - 4 - 3 0
table and TV(A) tim 1V(Yu) , there 1s a &-generated subobqect
s 1 b tha’t') iy

iy ¢ Y"-— A containing i& i YJ——?A suchYthe above pair becomes

y = N - LR r I - ] —‘_r/ " .
already equal when composed with Fv(z) : TV(YV) ;EV(YV), where

z YewwaYs denotes the inclusion. Since card(M) < § , there 1is a

S~generated subobject i1 : Y]~“+A , containing Y; for every VEM ,

together with a morphism 53 : im(TV(iO))-—»TV(YI) for every V& M -

T, (¢)
namely the obvious composite im(T(iO))muya TV(YV)quTV(Y]) - such

that the diagram



: 0

T (Y ) IV imr (s v T
y'iol TR im( V(lo)) m‘“m}f_mué V(A) ;
EO ///; l
T, (u ) \' l .
V' o //// N id
L
/ 1 . 1
LAY Py L v
T (Y)) ey (T () =iy 7 (a)
commutes, where u ot Yd*—aYl denotes the inclusion. We now procecd
by transfinite induction. If X 1is a successor ordinal, then YA is -
constructed from YA—] as above and so are the morphisms
=1 . 5 . .
3 : T s - M. 5 it
&y im( V(lk—l)) >TV(YA) for every V&M If X < o is a limit
ordinal, ithen let YA be any S8-generated subobject of A containing
- . ) - : : —oo ‘ate
every Yp for p<a . We claim that Y iiz YA is ? S g%?etated
pure subobject of A <containing YO = Y , The latter is obvious
because 1lin ik : lim Y—A 1is a monomorphism. Since 0<§ the
A<d A<l
object Y' 1is 6~generated by 2.8 . The purity of the inclusion
i' ¢ Y'——A tresults from the induced diagram
. A : p\
lim p - lim j
. =3 Py . : =% Jy
lim T —_— Y —_—
lim V(YA) .liﬂ‘lm (Tv(lx) e TU(A)
A<a A<o l
lim T, (i,) | & | { .
= = q i
>\<2¢S W
by iy
TV(Yf) = e im (Tv(i'))‘"**jf—*“T>TV(A)
N _ ) =
Ty(ih)
in which }iﬂ;jé is a monomorphism for every V&M . Hence q 1is
monomorphic., Since p& is a proper epimorphism, so 1s q and thus

q 1s an isomorphism. Moreover 1i% p& is an isomorphism, it's

A<d
inverse is 1lim £A . Hence T_(i') 1s a monomorphism for every Ve M ,
n<d v
i.e. 1i' : Y'—A is pure which completes the proof.

5.4 Definition Let T : B x A—C be a bifunctor. A monomorphism
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it Y--9A 1is called T-pure if 7T(B,i) : T(B,Y)——— T(B,A) is a
monomorphism for every Ba& k
Clearly T-purity is equivalent with purity as defined above for

{r(B,-) : A=l y oy

5.5 Corollary Let T : B x A-—C be a bltunnLor, where A, B

and € are locally presentable categories, Assume there

cardinal o such *hat T{(~,~) preserves a- filfcred COllmlto in both

variables and such that 1n hothh A and C a~filtered COllle° of

monomorphigsms are again monomo*phlkms Let ¢ be any legular CarnlvaT

such that

1} 6>a and the set M of equivalence classes of oa-~prasentable

objects in B has cardinality <8

2) B is locally a-presentable, € is locally §-noetherian and

=

is locally &-generated

3) if Ve B 1is o-presentable and Je A d-generated, then T(V,U)

is &- generated.

Then every o-generated subobject Y ofi AeAa 1is contained in a

A

S-generated T-pure subobject Y' of A .

Proof Since T(-,-) preserves o-filtered colimits in the first

variable and every B B is an o-filtered colimit of oa-presentable

objects, a monomorphism i : Y—3A is T-pure iff T(V,i) 1is a

i

monomorphism for every a-presentable object V& B . The assertion now

follows from 5.2,

5.6 Remar&i

a) Note that by 5.1 and D%] 13.3 there are always cardinals o and

¢ svch that A , B , C and T satisfy the conditions in 5.5

(The only exception is that (-,=-) preserves o-filtered co-

limits in both variables which has to be required separately).

The point is of course to chwoze & as small as possible,

b) As in 5.2 (cf. 5.3 c)) the asaunptions on T : B x A—— are not

1o

"



c)

SN

fully used and 5.5 can be generalized considerably, in particular
the existence of arbitrary colimits in A , B and C is not

neceded. The following conditions suffice to establish 5.5. There

is a set M of objecis in B such that T-purity can be tested

with the functors T(V,-) : A—+C with V running through M .

Putting T, = T(V,-) and X = C for Ve¢M

v Xy , then all the

conditions listed in 5.3 c¢) hold, i.e. A has o-~filtered colimits

and ... .

The notion of T-purity wae independantly introduced by T. Fox [ :.
For a locally presentable category X and a coherently symﬁetric,
associative and unitary tensor product @® : X x X+ X with rank

he proved that every y-generated subobject in X is contained in

1

a vy —generated pure subobject for some «y' . He gives no size

estimate for y' and the case of purity over non-commutative
rings is excluded. The present versions of 5.2 and 5.5 represent a
slight (but useful) improvement over the original svatement in [?1]q
The proofs of Fox [% ] and the one given here have little in
common. While our proof often gives the hest possible upper bound
for v', the one resulting from his proof is much too lavrge to be
useful in practice. Following Barr [i ], Fox [8 ] used 5.5 to prove

that the category of coalgebras in a locally presentablie category

A with respect to some teusor product @ : A x A—~%>§ and & co-

N

algebraic Prop has generators (cf. 4.7).IWE use,5,5 in the next
section to prove that the category of Z-cocontinuous functors
U—3>A has generators when I 1s a proper clasén

Fakir E??] defined the notiow of an a-algebraically closed monoc-
morphism in locally u—p%esentable categories. He showed that a
monomorphigm is o-algebraically closed iff it is an o-~filtered
colimit of splitting wonomorphisms. From this the relationship
with purity becomes evident and it is clear that the test functors

TV in 5.2 (resp. T(V,-) in 5.5) preserve a~-algebraically closecd
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monomorphisms, in particular the latter are pure. The converse

need not hold and obviously depends eon the family (T of

dye u

test-functors. It might be interesting to investigate (and characterize)

v

pure monomorphismswith respect to functors different from temnsor pro~ '

duct type functors, eg. (co)homology functors

(H_)

n n . _ ,
0 ne:m’(H )ﬁéiN’(Torn)nE N,(Ext ) etec. (i.e. functors which -

nc N
preserve o-filtered colimits for some o). Note that for any of theseé

sets of test functors theorem 5.2 applies and the size estimates for

§ can be effectively handled.



